Математическое моделирование загрязнения. Фундаментальные исследования

1

В условиях современной экологической обстановки моделирование загрязненности атмосферного воздуха является актуальной проблемой. Рассмотрено моделирование состояния качества атмосферного воздуха с использованием различных математических подходов, описывающих физико-химические процессы, которые моделируются в зависимости от вида загрязнения, параметров выбросов, метеорологических, топографических и других условий, влияющих на рассеивание загрязняющих веществ. Приведены ключевые требования, предъявляемые к моделям загрязнения атмосферного воздуха. Рассмотрены этапы построения и классификация моделей загрязнения атмосферного воздуха. Одним из типов моделей загрязнения атмосферного воздуха являются модели, имеющие в основе математическое описание физических процессов, происходящих в атмосфере. Подобными являются модели, построенные на базе решения уравнения турбулентной диффузии. Рассмотрены решения уравнения для описания явления переноса и диффузии загрязняющего вещества для моделей «клубка», факела», «ящика» и «конечно-разностной» модели. Описаны достоинства и недостатки этих моделей. Описана программная реализация модели «факела».

загрязненность атмосферного воздуха

моделирование

«клубок»

уравнения турбулентной диффузии

1. Егоров А.Ф., Савицкая Т.В. Управление безопасностью химических производств на основе новых информационных технологий. – М.: Химия, КолосС, 2006. – 416 с.

2. Баранова М.Е., Гаврилов А.С. Методы расчетного мониторинга загрязнения атмосферы мегаполисов // Естественные и технические науки. – М.: ООО «Издательство «Спутник+», 2008. – № 4. – С. 221–225.

3. Плотникова Л.В. Экологическое управление качеством городской среды на высокоурбанизированных территориях. – М.: Издательство Ассоциации строительных вузов, 2008. – 239 с.

4. Цыплакова Е.Г., Потапов А.И. Оценка состояния и управление качеством атмосферного воздуха: учебное пособие. – СПб.: Нестор-История, 2012. – 580 с.

5. Тюриков Б.М., Шкрабак Р.В., Тюрикова Ю.Б. Моделирование процессов распространения загрязняющих вредных веществ в воздухе рабочих зон производственных площадок предприятий АПК / Б.М. Тюриков, Р.В. Шкрабак, Ю.Б. Тюрикова // Вестник Саратовского ГАУ. – 2009. – № 10. – С. 58–64.

6. Моделирование распространения загрязняющих веществ в атмосфере на основании модели «факела» / Кондраков О.В. [и др.] // Вестник Тамбовского университета. – 2011. – Т. 16, № 1. – С. 196–198.

В условиях современной экологической обстановки моделирование загрязненности атмосферного воздуха является актуальной проблемой.

Развитие возможностей вычислительной техники позволяет использовать математический аппарат моделирования для исследования таких сложных физико-химических процессов, как атмосферная диффузия, трансформации загрязняющих веществ в атмосфере, процессы вымывания и осаждения примесей и пр., с учетом метеорологических и топографических условий .

Модель загрязненности атмосферного воздуха должна соответствовать следующим основным требованиям: необходимая разрешающая способность прогноза в пространстве и во времени; учитывать погодные условия и состояние тропосферы и поверхности земли в местах контакта, типов источников загрязнения; увеличение точности модели по мере увеличения количества информации или улучшения её качества .

Этапы построения модели загрязнения атмосферного воздуха представлены на рис. 1.

Результатом моделирования является распределение концентрации вредных веществ в пространстве и во времени.

Содержание постановки задачи моделирования может представлять собой получение либо оперативного прогноза, либо долгосрочного планирования. Оперативным считают прогноз для времени от 30 мин до одного дня . В других источниках рассмотрены иные сроки прогнозирования: экспресс или оперативное, предполагающее время 1-2 ч, краткосрочное для времени от 12 ч до 1-2 суток, долгосрочное - от 3 суток до 2-3 недель, перспективное - от 1 месяца до нескольких лет.

Наличие различных подходов к моделированию процессов, происходящих в атмосфере, обусловлено отсутствием обобщающей физико-математической модели, учитывающей все параметры явлений атмосферной диффузии. Выбор подхода к моделированию зависит от постановки задачи и определяет качество модели и точность прогноза.

Рис. 1. Этапы построения модели загрязнения атмосферного воздуха

При моделировании загрязнения атмосферного воздуха необходимо учитывать тип и время прогнозирования, определить класс источников загрязнения атмосферного воздуха - точечные, линейные, площадные и др., а также территориальное расположение источников загрязнения.

Классификация подходов к моделированию процессов, происходящих в атмосфере , приведена на рис. 2.

Одним из типов моделей загрязнения атмосферного воздуха являются модели, имеющие в основе математическое описание физических процессов, происходящих в атмосфере. Подобными являются модели, построенные на базе решения уравнения турбулентной диффузии (рис. 3).

В данных моделях физические явления переноса и диффузии загрязняющего вещества в атмосферном воздухе описываются уравнением

где С - концентрация загрязняющего вещества, - коэффициенты турбулентной диффузии, - вектор осредненного поля скоростей воздушной среды; QC - источник загрязнения .

Для математической постановки задачи решения уравнения (1) необходимо задание начальных и граничных условий, выбор которых обусловлен типом источника загрязнения и характеристиками поверхности.

Получить решение уравнения (1) возможно только при некоторых допущениях и ограничениях, либо используя численные методы.

Рис. 2. Классификация моделей загрязнения атмосферного воздуха

Рис. 3. Модели, основанные на решении уравнения турбулентной диффузии

Допустив в уравнении (1) отсутствие распространения частиц загрязняющих веществ с воздушными потоками, неоднородность атмосферы, а также предположив нахождение источника загрязнения вне области, получим уравнение

(2)

Фундаментальное решение этого уравнения представляет собой Гауссову кривую и используется в моделях «клубка» и «факела» .

В модели клубка предполагается, что источник загрязнения действует мгновенно. Перенос выброса загрязняющих веществ под влиянием ветра представляется в движущейся системе координат.

Модель «клубка» имеет следующий вид:

где x, y, z - координаты центра «клубка», определяющие траекторию его движения; u, v, w - средние значения скоростей ветра по направлениям x, y, z в момент времени t; σ x , σ y , σ z - стандартные отклонения размеров «клубка» в направлениях x, y, z соответственно; Q - количество загрязняющего вещества, выделенного источником в момент времени t.

Модель «клубка» имеет некоторые недостатки, такие как необходимость многочисленных измерений скоростей ветра по направлениям x, y, z, сложности выявления параметров клубка загрязняющих веществ (высота центра, отклонения размеров по направлениям), сложность программной реализации .

Рассмотрим модель «факела». В данной модели предполагается, что источник точечный и действует непрерывно.

Модель «факела» применяют в случае выброса загрязняющих веществ от различных по высоте точечных источников, температура и характер выбросов не учитываются .

Модель факела имеет следующий вид:

где C(x, y, z, H) - распределение концентрации по координатам x, y, z, Q - скорость выделения загрязняющего вещества; u - средняя скорость ветра; σ y (x), σ z (x) - стандартные отклонения размеров «факела» в горизонтальном и вертикальном направлениях при данном х, H = h + Dh - эффективная высота подъёма факела; h - высота трубы; Dh - подъём факела вследствие его плавучести .

При рассмотрении модели будем учитывать следующие допущения :

В пределах рассматриваемой области погодные условия однородны и не изменяются с течением времени;

Химические реакции с загрязняющим веществом не происходят;

Загрязняющее вещество не поглощается поверхностью;

На рассматриваемой области поверхность плоская.

Модель «факела» относительно проста и позволяет рассчитывать концентрации загрязняющих веществ по ограниченному количеству параметров, которые определяются экспериментально, что является ее главным достоинством. Как показывает опыт исследований, данная модель может применяться в 70 % метеорологических ситуаций .

Модель «ящика» используется для приближенной оценки уровня загрязняющего вещества от источников с большой поверхностью.

Данная модель имеет вид

где l - ширина «ящика», h - высота, С - средняя концентрация у задней (по направлению ветра) стенки «ящика»; u - средняя скорость ветра через «ящик».

При использовании численных методов решения уравнения диффузии получают «конечно-разностные» модели. Модели, полученные таким способом, не зависят от параметров источников, среды, граничных условий.

Основным недостатком этих моделей является сложность определения их устойчивости и точности, а также большая вероятность ошибок вычислений.

В данной работе рассматривается программная реализация модели «факела». Программа выполнена на языке С++ в среде разработки Borland C++ Builder 6.0.

Меню программы «Модель загрязненности атмосферного воздуха» состоит из трех пунктов: Файл, Расчет, Помощь. Содержимое пунктов меню приведено на рис. 4. Программа позволяет как загружать параметры расчета из файла, так и вводить их с клавиатуры. Также приведена подробная инструкция по работе с программой.

Главное окно программы представляет собой три области для заполнения параметров и одну для вывода рассчитанных результатов. Левая верхняя область содержит поля для ввода параметров атмосферы: скорость и направление ветра. Справа расположена область для ввода параметров источников загрязнения. При запуске программы в поле ввода «Номер источника» устанавливается значение «1». Далее следует заполнить поля для координат источника, скорости загрязнения, высоты трубы и высоты факела. При нажатии на кнопку «Сохранить» происходит сохранение параметров текущего источника, сброс значений в полях ввода и автоматическое изменение поля «Номер источника» на следующее значение номера.

Рис. 4. Содержимое пунктов меню

Рис. 5. Основное окно

В левой нижней области находятся поля для ввода координат точки замера. После заполнения всех данных для каждого источника следует нажать на кнопку «Рассчитать».

В нижней части главного окна расположено поле для вывода результатов. В этом поле накапливаются значения рассчитанных концентраций загрязняющих веществ для каждой точки замера. Результаты работы программы можно сохранить в текстовый файл. Данный файл содержит результаты для каждой точки замера: введенные параметры атмосферы, количество источников загрязнения и их параметры в соответствии с порядковым номером, а также координаты точки замера.

Входной файл для загрузки параметров должен содержать следующие данные в заданном порядке: скорость ветра, направление ветра, координаты точки замера по трем направлениям, количество источников и для каждого источника соответственно номер текущего источника, координаты источника по трем направлениям, скорость загрязнения, высота трубы, высота факела.

Главное окно программы с заполненными полями ввода и рассчитанными результатами для пяти точек замера приведено на рис. 5.

В данной работе рассмотрены различные модели распространения загрязняющих веществ, описывающие состояние атмосферного воздуха с использованием различных математических подходов, учитывающих виды загрязнения, параметры выбросов, метеорологические, топографические и другие условия, влияющие на рассеивание загрязняющих веществ. Приведены ключевые требования, предъявляемые к моделям загрязнения атмосферного воздуха. Рассмотрены этапы построения и классификация моделей загрязнения атмосферного воздуха.

Программно реализована модель «факела». Разработанная программа предоставляет возможность вычислять концентрацию загрязняющих веществ в точке замера. Результаты, полученные при моделировании, подтверждены экспериментально.

В дальнейшем предполагается создать автоматизированную систему, позволяющую выполнять как оперативное прогнозирование уровня загрязненности атмосферного воздуха, так и долгосрочное планирование.

Библиографическая ссылка

Хаширова Т.Ю., Акбашева Г.А., Шакова О.А., Акбашева Е.А. МОДЕЛИРОВАНИЕ ЗАГРЯЗНЕННОСТИ АТМОСФЕРНОГО ВОЗДУХА // Фундаментальные исследования. – 2017. – № 8-2. – С. 325-330;
URL: http://fundamental-research.ru/ru/article/view?id=41669 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Рассмотрим биосферные процессы распространения загрязнений от одиночных промышленных источников, особенное внимание, уделяя изучению санитарно - гигиеничных ситуаций из-за особо опасных условий загрязнения .

В общем случае смена средних значений концентрации U описывается уравнением

где оси x и y размещены в горизонтальной плоскости; ось z - по вертикали; t - время; V,P,W - составляющие средней скорости перемещения примесей относительно направления осей x, y, z; - горизонтальные и вертикальные составляющие коэффициента обмена; - коэффициент, который определяет смену концентрации за счет превращения примесей.

Однако, загрязнение атмосферы в городе в случае безинверсийного состояния воздушного бассейна может быть незначительным и не требует особенных способов для защиты населения.

Другая ситуация возникает из-за неприятных метеорологических условий (температурных инверсий при слабом ветре и штилевой погоде). Учет неприятных метеорологических условий принадлежит к числу малоисследованных вопросов.

Во время возникновения инверсий температура воздуха в приземном слое растет, а не падает, как в случае стойкой термической стратификации атмосферы. Перемешивание происходит слабо, а нижняя часть инверсионного слоя играет роль экрана, от которого частично или полностью отражается факел загрязняющих веществ, и в приземном слое растет концентрация вредных примесей к значениям, опасным для здоровья и жизни людей.

Теоретические модели расчета загрязнения атмосферного воздуха не отображают всего множества факторов, которые влияют на загрязнение от промышленного источника в экстремальных ситуациях, а являются только приближенными моделями, которые требуют сложных дополнительных исследований (теоретических и экспериментальных) для определения коэффициентов моделей и параметров процесса в случае их использования на практике. Экстремальные условия вследствие загрязнения, которые возникают при приземных инверсиях в атмосфере и отсутствии турбулентного обмена, описываются частным случаем общего уравнением диффузии. Однако, именно такие условия являются самыми опасными для здоровья человека и должны быть объектом гигиенических прогнозов в случае планирования размещения зон промышленных предприятий.

Для осуществления этой цели возникает необходимость создания уравнений прогноза на принципах самоорганизации, которые имеют следующие преимущества:

Структуру уравнения прогноза и коэффициенты моделей алгоритма находят по данным натурных наблюдений концентрации загрязняющих веществ при соответствующих условиях, что обеспечивает значительное уточнение модели;

Используется теоретическая информация о классе операторов, а конечные формулы расчета в виде конечных операторов являются простыми и дают возможность обозначить санитарно - гигиенические зоны предприятий.

Соответственно данной методике сначала определяют теоретические модели в виде дифференциальных операторов и их полуимперические аналоги с использованием данных наблюдений, а потом проверяют их адекватность при расчете концентраций с данными, которые не принимают участие в идентификации.

Теоретической моделью распространения примесей от одиночного источника является уравнение диффузии в цилиндрических координатах:

В случае одиночного точечного источника с учетом в самом общем виде уравнение (3.2) имеет вид:

где M - масса выброса за единицу времени; r - расстояние от источника; z - расстояние по вертикали; - угол поворота относительно оси; - функции:

Как видно из уравнения (3.3), источник загрязнения расположен в точке r=0 на высоте H. В точке, отличной от r=0, уравнение имеет вид:

Проведем перерез по линии максимального загрязнения вдоль факела на высоте:

и уравнение диффузии (3.3) превращается в одномерное:

Заметим, что функции, в общем случае - также функции высоты расположения источника H, т.е.; ; .

Структура уравнения (3.7) является исходной для идентификации разностных аналогов - моделей загрязнения атмосферы от промышленных источников.

Натурные наблюдения за выбросами промышленных предприятий были использованы для построения уравнений распространение отдельных ингредиентов, и они положены в основу практической проверки моделей.

Синтез уравнения для прогнозирования максимального уровня загрязнения пылью:

Для аппроксимации функций, использовали выражения:

где - линейные функции.

Производные запишем в виде соответствующей разницы:

Тогда структуру разностного оператора необходимо отыскать в классе линейных операторов F:

где - концентрация загрязняющего вещества в i - точке; - расстояние за радиусом от начала координат до i - точки.

По данным исследований в разных городах Украины были аппроксимированы непрерывные кривые наблюдений загрязнений. За комбинаторным алгоритмом добыта модель:

где; ; - концентрация пыли (максимальное значение в i точке).

Таким образом, методика определения качества атмосферного воздуха на территории города заключается в расчете концентрации загрязняющего вещества до тех пор, пока концентрация не примет значения предельно - допустимые для данного вещества.

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

240 руб. | 75 грн. | 3,75 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Автореферат - 240 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Новожилов Артем Сергеевич. Математические модели взаимодействия загрязнения с окружающей средой: Дис. ... канд. физ.-мат. наук: 05.13.18 Москва, 2002 84 с. РГБ ОД, 61:02-1/855-4

Введение

1. Концептуальная модель взаимодействия загрязнения с окружающей средой 12

1.1. Однократный выброс загрязняющих веществ в окружающую среду 12

1.2. Поведение кривой деструкции при многократном выбросе 13

1.3. Численное моделирование многократного выброса 16

1.4. Общие замечания 18

2. Дифференциальная модель взаимодействия загрязнения с окружающей средой 20

2.1. Модель атмосферной диффузии 20

2.2. Дифференциальная модель взаимодействия загрязнения с окружающей средой в точке 22

2.3. Качественное исследование дифференциальной математической модели 24

2.3.1. Замена переменных 24

2.3.2. Физический смысл параметров 25

2.3.3. Стационарные точки исследуемой системы 26

2.3.4. Параметрический портрет 27

2.3.5. Бифуркации положений равновесия 29

2.4. Модификация функциональной модели воздействия природы

на загрязнение 31

2.5. Возможные модификации модели 33

2.5.1. Учет эффекта Олли 33

2.5.2. Модификация функции мощности источника загрязнения 35

2.6. Предварительные выводы 36

2.7. Система загрязнение - окружающая среда при наличии периодического источника загрязнения 37

3. Распределенная математическая модель взаимодействия загрязнения

с окружающей средой 45

3.1. Формулировка задачи 45

3.2. Модель на плоскости 46

3.3. Трехмерная модель 47

3.4. Численное решение распределенных моделей 48

3.5. Имитационное моделирование взаимодействия загрязнения с окружающей средой 50

3.5.1. Математическая модель на плоскости 50

3.5.2. Трехмерная модель 52

3.5.3. Замечания 53

4. Идентификация параметров математической модели взаимодействия загрязнения с окружающей средой 54

4.1. Математическая модель 54

4.2. Аналитическая запись модели 55

4.3. Данные наблюдений 58

4.3.1. Краткая характеристика эколого-географических условий региона Кольского полуострова и комбината «Североникель» 59

4.3.2. Эколого-географическая характеристика района Южного Урала и Карабашского медеплавильного комбината 61

4.3.3. Данные об уровне загрязнения и плотности биомассы в исследуемых регионах 62

4.4. Алгоритм решения задачи идентификации параметров математической

модели взаимодействия загрязнения с окружающей средой 67

4.4.1. Окончательная формулировка математической модели 67

4.4.2. Вспомогательные результаты 68

4.4.3. Постановка задачи и алгоритм решения 71

4.5. Результаты и анализ полученных результатов 72

4.5.1. Оценки параметров 72

4.5.2. Анализ полученных результатов 74

ЗАКЛЮЧЕНИЕ 80

ЛИТЕРАТУРА 81

Введение к работе

Актуальность темы. Антропогенное воздействие, возрастающая урбанизация, развитие промышленности и сельского хозяйства поставили задачу разработки и применения комплекса мер, предотвращающих деградацию окружающей среды и позволяющих стабилизировать состояние биосферы. Это привело к выделению из экологии (ecology) - науки, предметом которой является понятие экосистемы, как целостного, эволюционно сложившегося образования, - области, занимающейся изучением и охраной окружающей среды (environmental science) - теоретической основы поведения человека индустриального общества в природе.

Несмотря на то, что экология есть биологическая дисциплина, для решения сложных, многомерных динамических задач описания, прогнозирования, оптимального использования и рационального конструирования разнообразных экологических систем необходим количественный и системный подход, осуществление которого немыслимо без широкого применения математических моделей и ЭВМ. Как подчеркивал Дж. Хатчинсон (Hutchinson, 1965), невозможно писать об экологии популяций без применения математики. К настоящему моменту разработано значительное количество различных математических моделей экологических систем любого уровня - ген, особь, популяция. В науке об охране окружающей среды так же используются математические модели (Марчук, 1982; Марчук, Кондратьев, 1992).

Поскольку эксперимент и наблюдение в наибольшей степени соответствуют познанию лишь тогда, когда они задуманы и осуществлены на основе научной теории, следует признать, что одним из наиболее плодотворных методов является метод математического моделирования.

В соответствии с идеологией математического моделирования для адекватного описания процессов, происходящих в окружающей среде, необходимо выявить ключевые факторы, оказывающие основное влияние на изучаемые процессы. Не вызывает сомнение факт, что загрязнение оказывает отрицательное влияние на окружающую среду. Известно так же, что растительный покров абсорбирует и перерабатывает загрязнение до некоторого предела. Естественно поставить вопрос о важности учета воздействия окружающей среды на загрязнение при формулировании тех или иных математических моделей, описывающих динамику биомассы при наличии загрязнения.

Рассматривая систему загрязнение - окружающая среда с точки зрения математического моделирования, в первую очередь необходимо выявить специфические характеристики изучаемого объекта, многообразие связей между элементами, их разнокачественность и соподчинение. По этой причине первым объектом исследования следует признать обособленную систему промышленное предприятие - конкретная экосистема. В данном случае процесс взаимодействия загрязнения и окружающей среды носит ярко выраженный характер, что упрощает анализ адекватности математической модели, и, с другой стороны, такая система не является исключением из правил. В качестве примеров можно привести рассмотренные в данной работе комбинат «Североникель» и Карабашский медеплавильный комбинат, и, кроме того, комбинат «Печенганикель», Гузумский металлургический комбинат в Швеции, металлургический комбинат в Садбери (Канада).

Степень разработанности проблемы. Начиная отсчет с основополагающих работ В. Вольтерра начала XX - го века (Вольтерра, 1926) к сегодняшнему дню предмет математической биологии - исследование биологических систем методом математического моделирования, - превратился в труднообозримый конгломерат идей и подходов, использующий все возможности современной математики (Мшту, 1996; Базыкин, 1985; Гиммельфарб А.А., 1974; Карев, Березовская, 2000; Одум, 1975; Ризниченко, Рубин, 1993; Смит, 1976; Федоров, Гильманов, 1980 и многие другие).

Как составную часть математической биологии можно рассматривать вопрос о математическом описании лесных фитоценозов. К настоящему времени этот раздел так же хорошо разработан. Модели описания динамики роста леса можно разделить на две категории. Первые описывают лесные массивы как единое целое (непрерывный подход), рассматривая, в принципе, всю тонкую пленку зеленого покрова как одно большое дерево. Этот подход разрабатывался, например, в следующих работах (Тоорминг, 1980; Кумль, Оя, 1984; Розенберг, 1984). Второй подход - описание лесной экосистемы как сообщества дискретных элементов с внутренними связями (Рачко, 1979;BotkinataI., 1972).

Учитывая, что тема настоящей работы связана с распространением загрязнения, отметим, что данный вопрос является хорошо изученной областью знания. Однако, основной задачей, исследуемой многими учеными, является задача краткосрочного прогноза распространения загрязнения (Берлянд, 1985). Существуют многочисленные модели для описания распространения загрязнения при наличии различных климатических условий, тумана, смога, различных типов подстилающих поверхностей, разнообразных рельефов местности (Берлянд, 1975,1985; Гудариан, 1979; Атмосферная турбулентность и моделирование распространения примесей, 1985).

Поскольку главной задачей любых природоохранных мероприятий является вопрос экологического нормирования воздействия на экосистему, отметим, что, хотя теоретические аспекты данной задачи сформулированы (Израэль, 1984), практически этот вопрос остается открытым. В настоящее время мы располагаем только значениями предельно допустимых концентраций (ПДК) для защиты человека. Следующим шагом должно стать установление ЭПДК - экологически предельно допустимых концентраций, защищающих экосистему от антропогенного воздействия (Воздействие металлургических производств на лесные экосистемы Кольского полуострова, 1995).

Наблюдения показывают (Буй Та Лонг, 1999), что динамика распространения загрязнения и динамика лесных экосистем сильно коррелированны, поэтому естественным шагом будет попытка объединить две хорошо исследованные области применения математического моделирования в одну систему. Многие математические модели учитывают воздействие загрязнения на окружающую среду. Воздействие загрязнения на человечество входило как составной блок моделей «Мировой динамики» Дж. Форрестера (Форрестер, 1978) и «Пределов роста» Д. Медоуза (Meadows at а]., 1972) при построении глобальных моделей для исследования процессов экономического развития мира. В ряде моделей исследуется динамика живой природы при наличии загрязнения (Тарко и др., 1987). Однако фактор очищающего воздействия природы на загрязнения при построении математических моделей рассматривается впервые. Коррелированность концентрации загрязнения и плотности биомассы изучались экологами с помощью статистических методов (Воздействие металлургических производств на лесные экосистемы Кольского полуострова, 1995; Комплексная оценка техногенного воздействия на экосистемы южной тайги, 1992; Бутусов, Степанов, 2000, 2001).

Цель работы. Целью настоящей работы является создание математических моделей взаимодействия загрязнения с окружающей средой и оценка адекватности распределенной математической модели взаимодействия загрязнения с окружающей средой на основе данных экологического мониторинга. Для достижения указанной цели решены следующие задачи:

Проведен анализ концептуальной модели взаимодействия загрязнения с окружающей средой с выявлением возможных сценариев поведения замкнутой системы загрязнение - окружающая среда.

На основании анализа концептуальной модели предложен ряд математических моделей, описываемых автономными системами обыкновенных дифференциальных уравнений (модели, локализованные в точке). Проведено качественное исследование дифференциальных моделей, включая анализ поведения систем при бифуркационных значениях параметров. Установлено качественное соответствие предложенных дифференциальных моделей и концептуальной модели взаимодействия загрязнения с окружающей средой.

Рассмотрена математическая модель взаимодействия загрязнения с окружающей средой при наличии периодического источника загрязнения. Найдено решение задачи об управлении источником загрязнения при наличии критического условия выживания живой природы.

Предложены распределенные математические модели, описываемые системами полулинейных дифференциальных уравнений параболического типа. Сформулирован алгоритм численного решения записанных моделей. Приведены примеры динамики взаимодействия загрязнения с живой природой.

На основании данных экологического мониторинга изучена задача об идентификация (получения числовых оценок параметров модели) распределенной математической модели взаимодействия загрязнения с окружающей средой. Предложен алгоритм решения задачи идентификации как поиск минимума функционала, связывающего решение математической модели и данные наблюдений.

Научная новизна результатов

1. Впервые предложен ряд математических моделей (систем дифференциальных уравнений) для описания динамики взаимодействия загрязнения с окружающей средой, отличительной чертой которых является наличие в них членов, описывающих влияние растительного покрова на концентрацию загрязнения. В работе разработана и реализована программа для осуществления имитационного моделирования взаимодействия загрязнения с окружающей средой.

На основе вычислительного эксперимента с использованием предложенной математической модели получены оценки значений параметров математической модели и проведен анализ адекватности рассматриваемой модели динамике реальной экосистемы,

На основе имитационного моделирования предложенной математической модели даны оценки предельно допустимых концентраций загрязнения для областей Кольского полуострова (комбинат «Североннкель») и Южного Урала (Карабашский медеплавильный комбинат)

Достоверность научных положений выводов и рекомендаций обоснована использованием математических доказательств, апробированной методологии имитационного моделирования, сопоставимостью результатов аналитических и компьютерных расчетов с имеющимися эмпирическими данными и экспертными оценками специалистов.

Практическое значение работы состоит в исследовании и анализе предложенных математических моделей взаимодействия загрязнения с окружающей средой, учитывающих способность растительности поглощать и перерабатывать вредные примеси. Как составная часть работы представлены результаты по идентификации параметров математической модели взаимодействия на основании данных экологического мониторинга областей Кольского полуострова и Южного Урала и получении оценок предельно допустимых концентраций загрязнения в рассматриваемых регионах.

Предложения, выносимые на защиту:

Математический анализ концептуальной модели взаимодействия загрязнения с окружающей средой.

Формулировка и анализ математических моделей взаимодействия загрязнения с окружающей средой, описываемых автономными системами обыкновенных дифференциальных уравнений,

Решение задачи об управлении периодическим источником загрязнения.

Формулировка и численное решение распределенных математических моделей взаимодействия загрязнения с окружающей средой, описываемых системами полулинейных уравнений параболического типа.

Идентификация параметров распределенной математической модели взаимодействия загрязнения с окружающей средой на основе данных экологического мониторинга.

Оценка экологически предельно допустимых концентраций загрязнения для рассматриваемых в работе регионов Российской Федерации.

Апробация работы. Результаты диссертации докладывались на международной конференции «Control of Oscillations and Chaos» («COC"OO»), Санкт-Петербург, июль 2000 г.; обсуждались на научном семинаре в Институте математики и электроники, Москва, 2001 г., научном семинаре Института проблем механики, Москва, 2001 г..

Различные части работы в различное время докладывались и обсуждались на научно-исследовательских семинарах в МГУ, в МИИТе, в 1999-2001 гг.

Публикации. Основные положения диссертации опубликованы в работах:

Братусь А.С, Мещерин А.С, Новожилов А.С. Математические модели взаимодействия загрязнения с окружающей средой II Вестник МГУ, сер. 15, Вычислительная математика и кибернетика, №1, 200] г. Стр. 23-28. Bratus A., Mescherin A. and Novozhilov A. Mathematical Models of Interaction between Pollutant and Environment It Proc. of the conference "Control of Oscillations and Chaos", July, St. Petersburg, Russia, 2000, vol. 3, pp. 569 - 572.

Новожилов А.С Идентификация параметров одной динамической системы, моделирующей взаимодействие загрязнения с окружающей средой II Известия РАН, сер. Теория и системы управления, №3, 2002 г.

Структура диссертации. Диссертация состоит из введения, четырех глав, заключения и списка литературы. Объем работы включает 84 страницы текста, 26 рисунков, 5 таблиц. Список цитируемой литературы насчитывает 67 наименований (59 русских и 8 английских).

Во введении обоснована актуальность темы, оценена степень разработанности проблемы, сформулированы цели и задачи работы, показаны научная и практическая ценность проведенных исследований, указаны защищаемые положения диссертации.

Предметом первой главы является концептуальная модель взаимодействия загрязнения с окружающей средой, предложенная Р.Г. Хлебопросом (Хлебопрос, Фет, 1999). Приводится качественный анализ рассматриваемой модели как одномерного дискретного отображения, показаны три основных сценария динамики экосистемы в рамках данной модели, приведены аналитические зависимости, описывающие динамику взаимодействия, на основе которых численно моделируется процесс многократного выброса загрязнения.

Во второй главе формулируются предположения, на основе которых записывается система автономных дифференциальных уравнений, описывающая взаимодействие загрязнение с окружающей средой. В соответствии с системным подходом в экологии экосистема рассматривается как черный ящик. Из многообразия внешних факторов выбирается только фактор (рассматриваемый, в соответствии с законом толерантности В.Шелфорда, как лимитирующий (Федоров, Гильманов,1980)) воздействия загрязняющих выбросов промышленного предприятия на окружающую среду. Средствами качественной теории дифференциальных уравнений проведен анализ фазовых потоков при различных значениях параметров и установлено качественное соответствие дифференциальной модели в точке концептуальной модели взаимодействия загрязнения с окружающей средой. Предложен ряд модификаций дифференциальной модели, основанных на хорошо изученных системах типа Лотка-Вольтерра (эффект Олли, использование трофические функции). Рассмотрена и исследована численно и аналитически математическая модель взаимодействия при наличии периодического источника загрязнения, найдено достаточное условие выживания природы в рамках рассматриваемой модели.

Предметом третьей главы является дальнейшее усложнение и модификация математической модели взаимодействия. Исходя из естественных соображений о неоднородности распределения концентрации загрязнения и плотности биомассы в пространстве, предложены математические модели, описываемые системами полулинейных уравнений параболического типа, которые учитывают пространственное распространение загрязнения и биомассы. Приведена схема численного решения исследуемых моделей и на основе имитационного моделирования рассмотрены процессы взаимодействия загрязнения с окружающей средой.

Четвертая глава имеет прикладное значение. Из спектра рассматриваемых математических моделей выбирается конкретная система уравнений в частных производных. Используя статистические данные экологического мониторинга областей Кольского полуострова (комбинат «Североникель») и Южного Урала (Карабашскии медеплавильный комбинат) разработан алгоритм решения и решена задача идентификации (оценки числовых значений параметров) математической модели. Проведен сравнительный анализ данных наблюдений и результатов имитационного моделирования. Получены оценки предельно допустимых уровней загрязнения для рассматриваемых регионов. Установлены границы применимости конкретной математической модели взаимодействия загрязнения с окружающей средой.

Благодарность. Автор выражает искреннюю признательность профессору, доктору физико-математических наук Братусю А.С., предложившего тему диссертации, поддерживавшему данную работу и оказывавшего автору помощь в решении многих задач. Так же автор выражает благодарность сотруднику Центра по проблемам экологии и продуктивности лесов РАН Бутусову О.Б., предоставившего автору материал по экологическому мониторингу различных регионов нашей страны и неоднократно обсуждавшего результаты работы.

Данная работа частично поддерживалась грантом Российского Фонда Фундаментальных исследований № 98 - 01 - 00483.

Однократный выброс загрязняющих веществ в окружающую среду

Практически в любом случае первым шагом при построении математической модели является описание той или иной биологической, экологической, физической и т,д. системы в терминах концептуальной модели, отражающей основные качественные аспекты характера поведения данной системы. Построение концептуальной модели основывается на данных и утверждениях специалистов в конкретной предметной области. Рассмотрим концептуальную модель взаимодействия загрязнения с окружающей средой (Хлебопрос, Фет, 1999).

Пусть есть точечный источник загрязнения (например, труба какого-либо металлургического предприятия). В некоторый начальный момент времени происходит мгновенный выброс загрязняющего вещества в окружающую среду. Естественно предположить, что происходит взаимодействие между природой и загрязнением. После некоторого фиксированного промежутка времени Т концентрация загрязнения уменьшится, так как происходит естественная диссипация загрязнения и часть загрязнения перерабатывается и абсорбируется природой. Другими словами, функциональная зависимость между выброшенной и оставшейся через Т единиц времени концентрацией загрязнения описывается некоторой кривой, которая лежит ниже биссектрисы первого координатного угла. Данная зависимость (кривая деструкции) получена экологами экспериментально и имеет вид, представленный на рис.ІЛ.

Величина Г выбирается из естественных соображений наглядности, так как если взять очень маленький промежуток времени, то кривая деструкции будет представлять собой просто биссектрису первого координатного угла (сколько выброшено, столько осталось); если Т велико, то кривая деструкции будет приближаться к оси абсцисс (после длительного промежутка времени концентрация загрязнения станет близка к нулю).

На рис.1.1 величина є обозначает постоянный фон загрязнения. Вид кривой деструкции обусловлен тем, что до определенной концентрации х0 окружающая среда активно вступает в реакцию с загрязнением, сильно влияя на концентрацию, а в точке х0 происходит насыщение, имеет место пороговый эффект. Данный эффект подтверждается экспериментально практически для всех вредных веществ (Комплексная оценка техногенного воздействия на экосистемы южной тайги, 1992). Например, лесные массивы могут перерабатывать даже тяжелые металлы, такие, как свинец, при этом малые концентрации загрязнения не только не влияют отрицательно на плотность биомассы, но и выступают в некотором роде катализаторами роста.

Кривую деструкции можно рассматривать как одномерное дискретное отображение xk+l = f(xk), которое имеет одну неподвижную точку. В данном случае эта неподвижная точка является глобальным аттрактором: как бы ни был велик выброс загрязняющего вещества в окружающую среду, через конечное время концентрация загрязнения уменьшится до величины естественного фона.

Модель атмосферной диффузии

Известно, что в общем виде пространственное и временное изменение концентрации любого загрязнителя u{t,x,y,z) можно описать следующим уравнением в частных производных (Берлянд, 1985): где и = u{t, х, у, z) - концентрация загрязнителя, х, у, z - пространственные декартовы координаты, t - время, v{yx,vy,v2) составляющие средней скорости перемещения загрязнителя и соответственно по направлению осей x,y,z (вклад ветра в перемещение загрязнителя), Kx,Ky,Kz - коэффициенты молекулярной диффузии, R-R(u,(,xty,z) - изменения за счет атмосферной турбулентности, эмиссии, диссипации и перемещения. Заметим, что компоненты вектора ветра могут быть функциями времени, коэффициенты диффузии могут быть функциями времени и пространственных координат.

Функцию R можно представить в следующем виде:

R = E(t, х, у, z) + Р(и) - w, (и) - w2 (и) ,

где E(t,x,y,z) - характеристическая функция источников эмиссии загрязнителя, Р(и)

Оператор, описывающий физические и химические превращения загрязнителя, w u)

Скорость вымывания загрязнителя осадками, w2 (и) - скорость сухого осаждения.

Так как в дальнейшем мы будем иметь дело с точечным источником загрязнителя, расположенным в точке с координатами х0,уа и на высоте Н, то

характеристическую функцию источников эмиссии можно задать с помощью дельта-функции Дирака (Тихонов и Самарский, 1977; Берлянд 1975,1985):

(/, х, yt z) - а6(х -х0,у- у0, z - #),0 t оо,

где а - мощность источника загрязнения, (хц,у0,Я) - координаты источника.

Оставшиеся члены допускают множество различных описаний в зависимости от вида загрязнителя и подстилающей поверхности, однако в данном конкретном случае, поскольку мы рассматриваем обобщенный загрязнитель, возможно ограничиться линейной зависимостью с некоторым коэффициентом пропорциональности g:

Р(и) - №, (и) - w2 (и) = -gu, g 0 ,

которая указывает на то, что постоянно происходит осаждение, вымывание и самораспад загрязнителя.

Уравнение (2.1) является уравнением в частных производных второго порядка параболического типа, поэтому необходимо поставить начальное и граничные условия. Предполагая существование начального распределения загрязнения, можно записать

«(О, х, у, z) = w0 (х, у, z) .

Исходя из естественных соображений, что на значительном удалении от источника загрязнения концентрация загрязнителя должна стремиться к нулю, поставим граничные условия:

u(t,x,y,z) - 0 при \х\ - да, \у\ - x ,z - да, t 0 .

Наконец, необходимо поставить граничное условие при z = 0. Здесь так же

возможен значительный выбор (Берлянд, 1985). Например, если подстилающей поверхностью является вода, большей частью поглощающая загрязнитель, то необходимое граничное условие будет выглядеть u(t,x,y,0) - 0 .

С поверхностью почвы загрязнители обычно слабо взаимодействуют. Попав на поверхность почвы, загрязнители не накапливаются на ней, а с турбулентными вихрями снова уносятся в атмосферу. Если считается, что средний турбулентный поток у земной поверхности мал, то

ди Kz - = G при z - 0,0 t да.

22. В общем случае граничное условие на подстилающей поверхности формулируется с учетом возможности поглощения и отражения загрязнителя. Некоторые авторы (Монин и Красицкий, 1985) предложили задавать это граничное условие в виде:

Зи Kz--pu= при z = 0,0 o. dz

В целях упрощения модели рассмотрим усреднение концентрации загрязнителя по высоте, другими словами, исключим третью координату из рассмотрения. С учетом вышесказанного, математической моделью распространения загрязнителя в пространстве R1 (на плоскости) будет смешанная задача

ди „. . ди ди „ д2и „ д2и

и(0,х,у) = ио(х,у) . (2.2)

u(t,x,y) = 0, при \x\- x ,\y\- co,t 0

В задаче (2.2) считается, что коэффициенты диффузии и составляющие вектора ветра являются постоянными величинами. Все параметры, входящие в задачу (2.2), кроме компонент вектора ветра, считаются неотрицательными.

2.2. Дифференциальная модель взаимодействия загрязнения с окружающей средой в точке

Схемы поведения, имеющие место в концептуальной модели взаимодействия загрязнения с живой природой (гл.1), лежат в основании для формулировки математической модели, описываемой обыкновенными дифференциальными уравнениями.

Рассмотрим уравнение (2.1), предполагая, что процесс локализован в некоторой точке пространства. Тогда мы можем записать обыкновенное дифференциальное уравнение

u = a-gu, w(0) = w0, (2.3)

где а - обобщенная мощность с учетом ветра и диффузии, м0 - начальная концентрация загрязнения.

Уравнение (2.3) имеет решение

u(t) = - + (u0--)e ,

из которого видно, что u{t) -» - при t со. Как и следовало ожидать, концентрация загрязнения при постоянном источнике стремится к определенному пределу,

соответствующему моменту, когда мощность источника уравновесится процессом

самораспада.

Предположим теперь, что загрязнение находится в постоянном взаимодействии

с окружающей средой, и окружающая среда оказывает очищающий эффект на

загрязнение. Будем рассматривать систему загрязнение - природа как замкнутую.

Исходя из этих предположений и считая, что и - концентрация загрязнения, v плотность биомассы, мы можем записать систему обыкновенных дифференциальных

уравнений:

lv = 0 v)-iK«,v)

где /(и, v) 0 - функция влияния окружающей среды на загрязнение, p(v) - функция, описывающая поведение плотности биомассы в отсутствие загрязнения, t//(u,v) 0 -функция влияния загрязнения на окружающую среду.

Поведение среды в отсутствии загрязнения будем описывать обычным логистическим уравнением:

V(v) = rv(\-), (2.5)

где г - скорость экспоненциального роста при v « К, К - потенциальная емкость экосистемы, обусловленная внешними факторами: плодородностью земли, конкуренцией и т.п. Решением логистического уравнения (2.5) с начальным условием v(0) = vu является функция

W0= -. v(t)- K при /- «.

Заметим, что, несмотря на то, что в уравнении (2.5) имеется квадратичный член, решение не может уйти на бесконечность за конечное время, так как мы рассматриваем (2.5) как математическую модель динамики биомассы, и в силу этого v0 0 .

В качестве моделей взаимодействия загрязнения и живой природы для простоты возьмем билинейные соотношения:

f(u,v) = cuv у/(и, V) - duv

Учитывая (2.4) - (2.6), простейшая динамическая модель взаимодействия загрязнения с окружающей средой, описываемая системой нелинейных обыкновенных дифференциальных уравнений, имеет вид:

и - а - gu - cuv

где все параметры предполагаются неотрицательными. Рассматривая (2.7) как математическую модель взаимодействия загрязнения с окружающей средой, необходимо рассматривать только неотрицательные решения (2.7), то есть фазовые точки с координатами (u,v)eRl - {(u,v) :и 0,v 0}.

Модель (2.7) является системой типа Лотка-Вольтерра для двух конкурирующих «видов»: загрязнения и живой природы. Единственным отличием является то, что характер роста в первом уравнении не имеет биологического, «живого» значения.

class3 Распределенная математическая модель взаимодействия загрязнения

с окружающей средой class3

Формулировка задачи

С точки зрения каких либо практических приложений ясно, что недостаточно изучить предложенную математическую модель как систему, сосредоточенную в фиксированной точке. В теории математического моделирования естественным образом появляются модели, где либо параметры, либо сами фазовые координаты являются функциями не только времени, но и пространственных координат. Во многих случаях параметры возмущаются случайным образом. В большинстве своем такое обобщение приводит к математическим моделям, описываемым либо одним уравнением, либо системой уравнений в частных производных, - бесконечномерной динамической системой.

В рассматриваемом конкретном случае естественно считать, что пространственное распределение концентрации загрязнения и плотности биомассы неоднородно, то есть загрязнение и биомасса есть функции пространственных координат:

v = v(x, у, Z, і) Источник загрязнения считаем точечным, математической моделью для него будет дельта-функция Дирака. Если имеется п источников загрязнения, то функция источника представляет собой сумму дельта-функций:

E(xty,h) = Y,at S(x-xi y-yi,h hi),i \...n,

где о, - мощность /-го источника загрязнения, (x y h - координаты /-го источника загрязнения.

Если множество координат источника загрязнения бесконечно, то в уравнение должна стоять дельта-функция от этого множества, - например, если множество координат источника загрязнения описывается уравнением у-ах + Ь, то необходимо рассматривать слагаемое S(y -ax-b) (это, например, может соответствовать автомагистрали).

Математическая модель

Опыт развития естествознания вообще и экологии в частности свидетельствует, что наблюдения и эксперименты в наибольшей степени способствуют познанию лишь тогда, когда они задуманы и осуществлены на основе научной теории. В точных естественных науках, к каковым все более стремится и современная экология, весьма эффективной формой выражения теоретических представления выступают модели, а одним из наиболее плодотворных методов служит метод моделирования, то есть построения, проверки, исследования моделей и интерпретации полученных с их помощью результатов.

Сущность метода моделирования состоит в том, что наряду с системой (оригиналом), которую мы обозначим J", рассматривается ее модель, в качестве которой выступает некоторая другая система - J, представляющая собой образ (подобие) оригинала у0 при моделирующем отображении (соответствии подобия) /: где скобки обозначают, что / - частично определенное отображение, то есть не все черты состава и структуры оригинала отображаются моделью. Обычно / целесообразно представлять в виде композиции двух отображений - огрубляющего и гомоморфного. В зависимости от характера огрубления и степени агрегирования (возможности модели в определенном смысле верно отображать оригинал) для одного и того же оригинала можно получить несколько различных моделей. Одно из достоинств метода моделирования состоит в возможности построения моделей с «удобной» реализацией (характеристика того «как и из чего модель сделана» (Полетаев, 1966)), ибо удачный выбор реализации делает исследование модели несравненно более легким, чем исследование оригинала, и в то же время позволяет сохранить существенные черты его состава, структуры и функционирования.

Наибольшее значение для экологии имеют две разновидности знаковых (идеальных) моделей: концептуальные и математические модели. Концептуальная модель взаимодействия загрязнения с окружающей средой рассматривалась в гл.1, различным математическим моделям были посвящены гл.2 и 3, Для целей настоящей. главы - сравнение результатов моделирования с данными наблюдений, - необходимо выбрать конкретную математическую модель из рассмотренных выше, применяя адекватное и по возможности наиболее сильно упрощающее модель огрубляющее отображение.

Чтобы получить информацию о пространственной изменчивости концентраций вредных веществ в воздухе и по экспериментальным данным составить карту загрязнения воздуха, необходимо систематически проводить отборы проб воздуха в узлах регулярной сетки с шагом не более 2 км. Такая задача практически невыполнима. Поэтому для построения полей концентрации используются методы математического моделирования процессов рассеяния примесей в атмосферном воздухе, реализуемые на ЭВМ. Математическое моделирование предполагает наличие достоверных данных о метеорологических особенностях и параметрах выбросов. Применимость моделей к реальным условиям проверяется по данным сетевых или специально организованных наблюдений. Расчетные концентрации должны совпадать с наблюдаемыми в точках отбора проб.

Моделью может служить любая алгоритмическая или аналоговая система, позволяющая имитировать процессы рассеяния примесей в атмосферном воздухе.

В нашей стране наибольшее распространение получила модель профессора М.Е. Берлянда. В соответствии с этой моделью степень загрязнения атмосферного воздуха выбросами вредных веществ из непрерывно действующих источников определяется по наибольшему рассчитанному значению разовой приземной концентрации вредных веществ (С м), которая устанавливается на некотором расстоянии (х м,) от места выброса при неблагоприятных метеорологических условиях, когда скорость ветра достигает опасного значения (V м), и в приземном слое происходит интенсивный турбулентный обмен. Модель позволяет рассчитывать поле разовых максимальных концентраций примеси на уровне земли при выбросе из одиночного источника и группы источников, при нагретых и холодных выбросах, а также дает возможность одновременно учесть действие разнородных источников и рассчитать суммарное загрязнение атмосферы от совокупности выбросов стационарных и передвижных источников.

Алгоритм и порядок проведения расчетов полей максимальных концентраций изложены в "Методике расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. ОНД - 86" и в соответствующих инструкциях к программам расчетов.

В результате проведенных расчетов на ЭВМ получаются:

  • · максимальные концентрации примесей в узлах расчетной сетки, мг/м 3 ;
  • · максимальные приземные концентрации (С м) и расстояния, на которых они достигаются (x м), для источников выбросов вредных веществ;
  • · доля вклада основных источников выбросов в узлах расчетной сетки;
  • · карты загрязнения атмосферного воздуха (в долях ПДК мр);
  • · распечатка входных данных об источниках загрязнения, метеорологических параметрах, физико-географических особенностях местности;
  • · перечень источников, дающих наибольший вклад в уровень загрязнения атмосферного воздуха;
  • · другие данные.

В связи с высокой насыщенностью городов источниками загрязнения, уровень загрязнения атмосферного воздуха в них, как правило, существенно выше, чем в пригородах и тем более в сельской местности. В отдельные периоды, неблагоприятные для рассеяния выбросов, концентрации вредных веществ могут сильно возрасти относительно среднего и фонового городского загрязнения. Частота и продолжительность периодов высокого загрязнения атмосферного воздуха будут зависеть от режима выбросов вредных веществ (разовых, аварийных и др.), а также от характера и продолжительности метеоусловий, способствующих повышению концентрации примесей в приземном слое воздуха.

Во избежание повышения уровней загрязнения атмосферного воздуха при неблагоприятных для рассеяния вредных веществ метеорологических условиях необходимо прогнозировать и учитывать эти условия. В настоящее время установлены факторы, определяющие изменение концентраций вредных веществ в атмосферном воздухе при изменении метеорологических условий.

Прогнозы неблагоприятных метеорологических условий могут составляться как для города в целом, так и для групп источников или отдельных источников. Обычно выделяются три основных типа источников: высокие с горячими (теплыми) выбросами, высокие с холодными выбросами и низкие.

В дополнение к комплексам неблагоприятных метеоусловий, можно добавить следующее:

  • - Для высоких источников с горячими (теплыми) выбросами:
    • · высота слоя перемешивания меньше 500 м, но больше эффективной высоты источника;
    • · скорость ветра на высоте источника близка к опасной скорости ветра;
    • · наличие тумана и скорость ветра больше 2 м/с.
  • - Для высоких источников с холодными выбросами: наличие тумана и штиль.
  • - Для низких источников выбросов: сочетание штиля и приземной инверсии.

Следует также иметь в виду, что при переносе примесей в районы плотной застройки или в условиях сложного рельефа, концентрации могут повышаться в несколько раз.

Для характеристики загрязнения атмосферного воздуха по городу в целом, т.е. для фоновой характеристики, в качестве обобщенного показателя используется параметр Р:

где N - число наблюдений за концентрацией примеси в городе в течение одного дня на всех стационарных постах; М - количество наблюдений в течение того же дня с повышенной концентрацией примеси (q), превышающей среднее сезонное значение (qЇ сс), более чем в 1,5 раза (q > 1,5 qЇ сс).

Параметр Р рассчитывается для каждого дня как по отдельным примесям, так и по всем вместе. Этот параметр является относительной характеристикой, и его значение определяется главным образом метеорологическими факторами, оказывающими влияние на состояние атмосферного воздуха по всей территории города.

Использование при прогнозе параметра Р в качестве характеристики загрязнения воздуха по городу в целом (предиктанта) предусматривает выделение трех групп загрязнения воздуха, определяемых характеристиками, приведенными в табл. 1

В целях предотвращения чрезвычайно высоких уровней загрязнения, из первой группы выделяется подгруппа градаций с Р > 0,5, повторяемость которой составляет 1 - 2%.

Методика предсказания вероятного роста концентраций вредных веществ в атмосферном воздухе города предусматривает использование прогностической схемы загрязнения воздуха, которая разрабатывается для каждого города на основании опыта многолетних наблюдений за состоянием его атмосферы. Рассмотрим общие принципы построения прогностических схем.

Прогностические схемы загрязнения воздуха в городе должны разрабатываться для каждого сезона года и каждой половины дня отдельно. При скользящем графике отбора проб воздуха к первой половине дня относятся сроки отбора проб в 7, 10 и 13 ч, а ко второй - в 15, 18 и 21 ч. При трехразовом отборе проб к первой половине дня относят сроки отбора проб в 7 и 13 ч, а ко второй - в 13 и 19 ч.

Метеорологические предикторы для первой половины дня берутся за срок 6 ч, а данные радиозондирования - за срок 3 ч. Для второй половины дня в качестве предикторов принимаются метеоэлементы за срок 15 ч. Характеристики метеорологических условий и предикторов, а также их порядок использования в прогнозах детально изложены в "Методических указаниях по прогнозу загрязнения воздуха в городах".

Оперативное прогнозирование загрязнения атмосферного воздуха проводится с целью кратковременного сокращения выбросов вредных веществ в атмосферный воздух в периоды неблагоприятных метеорологических условий.

Обычно составляются два вида прогноза загрязнения атмосферного воздуха по городу: предварительный (на сутки вперед) и уточненный (на 6 - 8 ч вперед, в том числе утром на текущий день, днем на вечер и на ночь).

УДК 004.942

Н.А. Соляник, В.А. Кушников

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ЗАГРЯЗНЕНИЯ АТМОСФЕРНОГО ВОЗДУХА В ЗОНЕ ВЛИЯНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

Представлены модели и алгоритмы для информационнопрограммного обеспечения экологического мониторинга в зоне влияния промышленных предприятий. Рассматриваются модели атмосферной дисперсии с целью их оптимизации и дальнейшего применения в разрабатываемом информационно-программном комплексе. В качестве основной модели атмосферной дисперсии применяется математическая модель на основе уравнения Гаусса.

Математическое моделирование, экологический мониторинг, атмосферный воздух, Гауссово распределение концентраций, автоматизированная система управления, источник загрязнения, промышленный комплекс.

N.A. Solyanik, V.A. Kushnikov

THE MATHEMATICAL SIMULATION OF AIR POLLUTION IN INDUSTRIAL ZONE OF INFLUENCE

The paper presents models and algorithms for information-software of the ecological monitoring in a zone of the industrial enterprises’ influence. We consider models of an atmospheric dispersion with the goal of their optimization and the further application in a developed information-program complex. As the basic model of the atmospheric dispersion the mathematical model on the basis of Gauss equation is applied.

Mathematical modeling, environmental monitoring, air, concentrations Gaussian distribution, automated control system, the source of pollution, industrial complex.

В условиях интенсификации хозяйственной деятельности и увеличения числа регулярно функционирующих промышленных объектов на территории Российской Федерации всё большее значение приобретает оценка негативного влияния на окружающую среду со стороны промышленного комплекса. При этом наиболее опасным является загрязнение атмосферного воздуха в зоне влияния промышленных предприятий .

Экологический мониторинг в крупных промышленных центрах Российской Федерации ведется недостаточно эффективно. Так, например, в связи с тем, что г. Саратов является крупным промышленным центром, расположенным на территории со сложным рельефом и имеющим город-сателлит Энгельс, необходимо увеличение количества постов наблюдения за состоянием атмосферного воздуха , что потребует значительных материальных затрат.

Существуют и альтернативные методики получения актуальной информации об уровне загрязнения воздушного бассейна, например аэрокосмический мониторинг атмосферного воздуха. Но их применение, как и строительство дополнительных постов наблюдения, связано с существенными материальными вложениями.

В этой связи актуальной является задача математического моделирования процессов распространения загрязняющих примесей в атмосферном воздухе в зоне влияния промышленных предприятий. Моделирование является более экономически выгодной альтернативой применения стационарных постов наблюдения и аэрокосмического мониторинга воздушного бассейна. При этом применение математических моделей распространения примесей в атмосферном воздухе существенно повысит оперативность получения результата.

Необходимо разработать комплекс математических моделей, предназначенных для экологического мониторинга атмосферного воздуха в зоне влияния промышленных предприятий.

Данные математические модели ориентированы на использование в составе автоматизированной системы управления процессом загрязнения окружающей среды в зоне влияния промышленных предприятий, в связи с этим возникает необходимость рассмотреть наиболее распространенные процедуры управления качественным составом воздушного бассейна.

Во-первых, своевременное получение информации об уровне концентрации веществ-загрязнителей позволяет выявить источники, влияние которых существенно увеличивает риск здоровью населения рецепторных точек. При этом, моделируя процесс загрязнения атмосферного воздуха источником-нарушителем, мы можем изменить входные параметры объекта управления, такие как мощность выброса, высота источника (трубы), с целью минимизации уровня концентрации. Это позволит сформулировать требования к источнику загрязнений, при реализации которых уровень его негативного воздействия на окружающую среду будет сведен к минимуму. Кроме того, появляется возможность моделирования различных видов метеоусловий. Это позволит соответствующим службам более четко выработать правила, регламентирующие уровень выбросов в соответствии с неблагоприятными метеорологическими условиями для каждого источника загрязнения.

Рассмотрим основные физические процессы, математическое моделирование которых будет использовано при решении поставленной задачи.

Основу математической модели составляют зависимости, позволяющие рассчитать распространение примесей в атмосферном воздухе от источника загрязнения с учетом параметров источника и окружающей среды. При этом большинство авторов рассматривают два больших класса моделей: модели на основе Гауссова распределения концентраций и транспортные модели, в основу которых положено уравнение турбулентной диффузии. Остановимся более подробно на Гауссовых моделях (рис. 1).

Предметом моделирования являются процессы распространения загрязняющих веществ в атмосферном воздухе в зоне влияния промышленных предприятий.

К входным параметрам модели относятся:

Н - эффективная высота подъема факела, выраженная в метрах и характеризующая начальный подъем примеси. В работе дан обзор основных формул расчета Н;

Q - мощность или

интенсивность источника выброса, выраженная в г/с и характеризующая количество вещества, выделяемого источником в момент времени t.

Возмущения модели

характеризуются следующими

параметрами:

К - класс устойчивости атмосферы. Выделяют 6 классов устойчивости приземного слоя воздуха,

символьно обозначенных через первые 6 букв английского алфавита (от А до Б). Каждому из классов соответствуют определенные значения скорости ветра и, степени инсоляции и времени суток ;

И - скорость ветра на высоте Н, выраженная в м/с;

Ф - направление ветра, выраженное через угол наклона к базовой системе координат.

Выходом модели является уровень концентрации загрязнителя С(ху,г) в точке пространства (ху^), выраженный в мкг/м3.

Рис. 1. Принцип действия модели распространения примесей в атмосферном воздухе на основе Гауссова распределения концентраций

устойчивости

атмосферы

Возмущения

и- скорость

ц>- направление ветра (выражено через угол наклона к базовой системе координат)

Н- эффективная

Входы высота подъема факела Математическая модель С(х,у^)- концентрация у X -О со

(^- мощность источника выброса загрязнителя в точке пространства (х/у/г)

Рис. 2. Входные и выходные параметры математической модели

В рассматриваемой модели направление ветра совпадает с направлением оси ОХ, началом координат считается основание источника (например, основание трубы). Существует ряд Гауссовых моделей, которые отличаются способами задания дисперсии распространения примесей в соответствующих направлениях. Ниже приведен общий вид нестационарной Гауссовой модели распространения примесей в атмосферном воздухе:

(27Г)3 2СТхСТу(72

((х-ш)2 С---Я)2’ (г + Н I2

V х е У е 2 " + е

Была разработана имитационная система моделирования распространения примесей в атмосферном воздухе (рис. 3), предназначенная для вычисления уровня концентрации примеси во всех точках пространства х, у, г. Система позволяет производить расчет уровня концентрации загрязнителя при заранее определенных входных параметрах, а также проследить за изменением значения концентрации в зависимости от изменения того или иного параметра. Одновременно с этим, можно вычислить средний уровень концентрации в условиях, когда значения входных параметров меняются со временем.

Рис. 3. Алгоритм моделирования и функциональная спецификация имитационной системы моделирования распространения примесей в атмосферном воздухе

Алгоритм моделирования:

1. На начальном этапе задается базовая система координат, а также количество шагов изменений входных параметров во времени.

3. На следующем шаге генерируются значения скорости и направления ветра, а также классы устойчивости атмосферы.

5. Полученный результат «накладывается» на базовую систему координат, после чего в зависимости от размерности сгенерированных массивов входных переменных итерационно повторяются шаги с 3 по 5.

6. На последнем шаге вычисляется среднее значение уровня концентрации

загрязнителя во всех точках пространства х, у, г и осуществляется визуализация

результата.

На выходе математической модели присутствует трехмерный массив, содержащий значения уровня концентрации загрязнителя во всех точках пространства х, у, г. Полученные значения используются для построения графиков,

характеризующих уровень концентрации загрязнителя на различном удалении от источника, в том числе график поверхности шлейфа примеси от источника (рис. 4), а также различные виды графиков в виде изолиний (рис. 5).

Рис. 4. Визуализация результатов моделирования при различных параметрах входов и возмущений

Рис. 5. Графики уровня концентрации загрязнителя в изолиниях (ось абсцисс - координаты по направлению ветра X, ось ординат - координаты, перпендикулярные направлению ветра Y)

Полученные результаты подтверждают возможность использования выражения (1) при моделировании процессов распространения загрязняющих примесей в атмосферном воздухе в зоне влияния промышленных предприятий.

ЛИТЕРАТУРА

1. Соляник Н. А. Информационная система прогнозирования состояния атмосферного воздуха г. Саратова / Н.А. Соляник, В.А. Кушников, Н.С. Пряхина // Экологические проблемы промышленных городов: сб. науч. тр. Саратов: СГТУ, 2005. С. 153-156.

2. ГОСТ 17.2.3.01-86 «Правила контроля качества воздуха населенных пунктов». М.: Изд-во стандартов, 1986. 26 с.

3. Берлянд М.Е. Прогноз и регулирование загрязнений атмосферы / М.Е. Берлянд. Л.: Гидрометеоиздат, 1985. 272 с.

выбросами в информационно-аналитической системе природоохранных служб крупного города: учеб. пособие / С.С. Замай, О.Э. Якубайлик. Красноярск: КГУ, 1998. 109 с. Соляник Николай Александрович - Solyanik Nikolay Aleksandrovich -

аспирант кафедры «Информационные Graduate Student of the Department

системы в гуманитарной области» of «Information Systems in Humanities»

Саратовского государственного of Saratov State Technical University

технического университета

Кушников Вадим Алексеевич -

профессор, доктор технических наук, заведующий кафедрой «Информационные системы в гуманитарной области» Саратовского государственного технического университета

Kushnikov Vadim Alekseyevich -

Professor, Doctor of Technical Sciences, Head of the Department of «Information Systems in Humanities» of Saratov State Technical University